An Optimal Bivariate Polynomial Interpolation Basis for the Application of the Evaluation-Interpolation Technique
نویسندگان
چکیده
منابع مشابه
An Optimal Bivariate Polynomial Interpolation Basis for the Application of the Evaluation-Interpolation Technique
Abstract: A new basis of interpolation points for the special case of the Newton two variable polynomial interpolation problem is proposed. This basis is implemented when the upper bound of the total degree and the degree in each variable is known. It is shown that this new basis under certain conditions (that depends on the degrees of the interpolation polynomial), coincides either with the kn...
متن کاملBivariate Polynomial Interpolation at the Geronimus Nodes
We consider a class of orthogonal polynomials that satisfy a threeterm recurrence formula with constant coefficients. This class contains the Geronimus class and, in particular, all four kinds of the Chebyshev polynomials. There are alternation points for each of these orthogonal polynomials that have a special compatibility with the polynomials of lower index. These points are the coordinates ...
متن کاملBivariate mean value interpolation on circles of the same radius
We consider bivariate mean-value interpolationproblem, where the integrals over circles are interpolation data. In this case the problem is described over circles of the same radius and with centers are on astraight line and it is shown that in this case the interpolation is not correct.
متن کاملBivariate Polynomial Interpolation over Nonrectangular Meshes
In this paper, by means of a new recursive algorithm of non-tensor-producttyped divided differences, bivariate polynomial interpolation schemes are constructed over nonrectangular meshes firstly, which is converted into the study of scattered data interpolation. And the schemes are different as the number of scattered data is odd and even, respectively. Secondly, the corresponding error estimat...
متن کاملGaussian Cubature and Bivariate Polynomial Interpolation
Gaussian cubature is used to study bivariate polynomial interpolation based on the common zeros of quasi-orthogonal polynomials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics & Information Sciences
سال: 2014
ISSN: 1935-0090,2325-0399
DOI: 10.12785/amis/080114